

CISC 326 A1
Conceptual Architecture:

SuperTux

Group: TBA
October 22nd 2017

Instructor: Ahmed Hassan

Coco Chen 14kxc@queensu.ca
Yihao Chen 15yc9@queensu.ca
Yuhao Chen 14yc37@queensu.ca
Brayden Dewar 13bad2@queensu.ca
Lena Krause 14lk6@queensu.ca
Selin Onsoz 13bso@queensu.ca

1

mailto:14kxc@queensu.ca
mailto:15yc9@queensu.ca
mailto:14yc37@queensu.ca
mailto:13bad2@queensu.ca
mailto:14lk6@queensu.ca
mailto:13bso@queensu.ca

Abstract
The purpose of this report is to determine a conceptual architecture for the game SuperTux
and describe the process of how the team came to conclusions. It was determined that the
highest level subsystems in SuperTux are connected in a layered style while connections
between subsystems in layers exhibit object oriented qualities.

The team was able to conclude that the conceptual of SuperTux is a hybrid of Layered and
Object Oriented. The highest level layer encompasses four main subsystems; user interface,
game specific subsystems, resources, and a hardware abstraction layer. Data flows from the
highest layer of the user interface subsystem to the lowest layer hardware abstraction
subsystem. The resources and game specific systems subsystems have lower level systems
which interact with each other – giving the architecture object oriented qualities. Examples of
the specific use cases of a user controlling the character Tux to activate a power up block are
dissected in order to show lower level data flow and function calls between subsystems.

The benefits of the conceptual architecture are high levels of cohesion in subsystems and the
ability to implement a highly functional user interface to facilitate fun gameplay.
Concurrency is handled appropriately so that the architecture’s many resource subsystems
and user interface can work together for a smooth user experience. Throughout the
development of the conceptual architecture the group learned lessons about game architecture
and group work that will aid them in future assignments together.

2

Contents
Abstract 2

1.0 Introduction 4

2.0 Derivation Process 4

3.0 Architecture Overview 7
3.1 User Interface 8
3.2 Game Specific Subsystem 8

3.2.1 Game States 8
3.2.2 Game Data 9
3.2.3 Add-on Repository: 9

3.3 Resources 9
3.3.1 Physics Engine 9
3.3.2 Graphics Engine 10
3.3.3 Audio Engine 10

3.4 Abstraction Layer 10

4.0 Sequence Diagram analysis 11
4.1 Sequence Diagram I 11
4.2 Sequence Diagram II 12

5.0 Concurrency 12
5.1 Audio and Graphics 13
5.2 Graphics and Gameplay 13
5.3 User Input and Gameplay 13

6.0 Lessons Learned 13

7.0 Conclusion 14

References 15

3

1.0 Introduction
Before work on the assignment began, the eight different architecture styles were discussed in
class. Architecture styles are blueprints for how to structure code in terms of what features of
a software are grouped together in subsystems and how these subsystems interact and depend
on each other. The architecture styles are pipe & filter, layered, object-oriented, repository,
client server, implicit invocation, and process control. All eight architecture styles have their
own unique advantages and disadvantages, making it important to think carefully about
which architecture style most appropriately suits the software to be implemented. The goal of
this assignment was to study the game SuperTux and design a conceptual architecture that
would suit the game using the information presented in class and individual research of
software architectures and SuperTux.
The developers of SuperTux describe the game as “free classic 2D jump’n run sidescroller
game in a similar style to the original Super Mario games”(supertux.org). The game is free to
download and play, and supports offline play. Its code is open source and anybody can
contribute to the game, as while it has been released since 2003, it is always in development.
SuperTux is released in “milestones” that the developers set for themselves to ensure ongoing
enhancement and quality of the game. The SuperTux team is currently working on milestone
3. In addition to the main gameplay, SuperTux has a level editor mode where users can create
their own levels which they can submit to be used in the story mode, allowing users with
non-technical skills to contribute to game content. SuperTux is coded in C++ and can run on
many different platforms including Windows, Android, Linux, and MAC OS.

2.0 Derivation Process
Deriving the conceptual architecture involved playing SuperTux, using reference
architectures, and reading the many resources regarding SuperTux’s long development
history.
Playing the game allowed for familiarization with the game mechanics and how the game
expects users to interact with the game. After experimenting with SuperTux the team was
able to construct a user-case diagram to describe interactions between the player and the
game.

4

Figure1: User case diagram

The user-case diagram allowed the team to see that there are two main in game modes that
the user is expected to play. The first is the story mode, where the player navigates through a
level, collecting coins, and killing enemies on their way to a goal. The second is the level
editor mode, where the user can create their own levels using a click-and-drag interface. The
conclusion from these findings was that somewhere in the architecture there should be two
distinct gameplay subsystems – a subsystem for playing levels and a subsystem for editing
levels. A user interface subsystem was also determined to be fundamental as this allows the
user interactions with the game. This was a starting point, as it had yet to be determined how
these subsystems would interact.

A reference architecture is used as a general software architecture for a specific category of
software. The below software architecture is a reference architecture targeting video games,
one that can be used for video games of different genres.

This reference architecture displays a general architecture for a game engine. The architecture
style of this reference architecture is layered – data flows from the higher level subsystems to
the lower level subsystems. Studying this reference architecture allowed the team to learn two
key things that aided in the construction of SuperTux’s conceptual architecture:

5

Figure2: Reference architecture diagram “Game Engine Architecture”

1. Game architectures are frequently layered style
2. The types of subsystems that are usually present in the architecture of a video game.

Studying this architecture facilitated the understanding of interactions between the
subsystems that were determined from playing the game and the user-case diagram.

The initial architecture that was proposed was primarily a
layered style. Limitations that we found with this
architecture was that it was unclear how the game specific
subsystems interacted with the user, while being too specific
about how the in game objects interact with each other. It
was decided that an improved architecture would need to be
created to clear up any ambiguity about user interface and
create an all-encompassing ‘game state’ subsystem which
would allow for higher cohesion among the in game features.

Figure 3: Initial Conceptual architecture proposal

6

3.0 Architecture Overview

Figure 3: High level layers of the SuperTux

SuperTux is a mix of layered and object-oriented style system that is shown in Figure 3. The
relationships between the major components in the system are shown in Figure 4. There are
four main layers in the system; User Interface, Game Specific Subsystems, Resources and
Hardware Abstraction Layer. The arrow between each two layers shows the dependency. For
example, Game Specific Subsystems are depends on Resources so that it can refer to the data
in Resources.

The User Interface returns and displays the result on the screen from the Game Specific
Subsystems. The Game Specific Subsystems layer consists of “Game Data”, “Game States”
and “Add-On Repository” components. This layer acts as the core of the SuperTux, it decides
how the game runs in progress and outputs into the User Interface layer. The Resources layer
consists of “Physics”, “Audio”, “Graphics” and “User Input” components. It manages the
game recourses, user input references and real world physical rules to support the Game
Specific Subsystems. The Hardware Abstraction Layer makes sure that SuperTux can run on
multiple platforms.

7

Figure 4: UML diagram of SuperTux

3.1 User Interface
The User Interface layer means by which the user and SuperTux game system interact, and
manages settings throughout the game. It gets all the results from the Game Specific
Subsystem layer and outputs everything about the game that the user can perceive to the
screen, such as graphics and audio.

3.2 Game Specific Subsystem

Figure 5:Subsystem dependency diagram

This subsystem depends on the user input. The job for a person who plays the game is only to
press the keyboard and moving the mouse. However, how can these actions influence the
game to let the tux move or do some other actions such as adding a new language package?

The answer is calling the functions in game-specific subsystems. It can be broken down into
three parts; Game State, which contains the main ideas of the game and responsible for the
rules of the game; Game data, which contains the functions, data and record object; and
Add-on repository, which is a storage of the language package of the game.

3.2.1 Game States
Game States sub-system consists of game logic, current state and level editor.
Game logic is the main logic of the game. Players have to follow the rule of the game. They
cannot control the tux to do something that not allow by the logic. For example, the tux
cannot fly, and the bad guys cannot speak. Current state is the current status. Level editor is
an editing tool which can let the player create their own level to the story.

Depend on Game Data
If the system receives a moving instruction (bases on the logic) from user interface, one of
the game object in Game data will be called to move the tux. Another example is for the
current state, which is also better for understanding this state. Current state is just a state that
record nothing by itself. It needs to call the record object in game data to get the record and
form a current status.
Depend on Add-on Repository
The state will be changed, if the language package is changed.

8

3.2.2 Game Data
In a game, every object is a subset of game data which means that all the stuff such as the tux,
bad guys, button, level, record object, world map and so on inherit from this big container
(just like a list). The functions such as movement and power up also belongs to this storage.
Overall, game object bases on the source code of SuperTux.
The record object:
It is a repository for the game recording. It records the status of the player, the number of
coins you get, the level you reach and everything that need to be recorded. The data of current
state will also be saved here.
Power up function:
It is a function which can give power to the tux.
Moving function:
This function is responsible for the movement of all stuffs in the game. It also provides a
position detection.
World Map:
The map of the game. Player can see the storyline on it.

3.2.3 Add-on Repository:
This is an online system which allows players to add some additional elements into the game,
such as the language package. It also contains the levels which are created by other people
and allows players to download them.

3.3 Resources
The resources layer primarily includes systems known as middleware. In game development,
middleware is typically defined as anything provided by a third-party. This means
middleware is not programmed by the game developers, but programmed by someone else.
The game developers integrate these systems in because they perform specific, important
roles, and often times are very complex with a higher processing power than any other part of
the game. Using third-party software allows game developers to focus on developing content
specific to their game.

In this architecture, the Game Logic system relies heavily on this middleware for lower level,
intensive computations.

3.3.1 Physics Engine
A physics engine's purpose is to handle any calculations the game requires concerning the
laws of physics. The Game Logic system requires this engine to calculate things like
acceleration and deceleration when moving, the effects of gravity to movement and player

9

location when jumping and falling, and handles collision detection and any resulting
pushback movement on the object or objects that collide.

3.3.2 Graphics Engine
More commonly known as the renderer or rendering engine, this engine essentially draws the
2D image of the game onto the computer screen. Game Logic calls on this every single frame
per second to redraw the game as things move and change. Because this is a simple 2D game,
things like shading and reflection do not need to be taken into account so graphics aren't as
intensive as they would be in 3D games. The rendering engine needs to keep in mind things
like overlapping sprites, objects and images, and when these things are animated and move to
different positions every frame.

3.3.3 Audio Engine
The audio engine is also called by the Game Logic to output the necessary audio files to the
machine's speaker, and when it needs to do so to keep in sync with what is being shown on
screen by the graphics engine.

3.4 Abstraction Layer
As stated earlier, the game SuperTux can run on Mac OS, Windows, Linux and on mobile
Android operating systems. Each of these operating systems have some fundamental
differences that can make software development complex. Many different types of software
around the world are only compatible with a certain number of operating systems as a result.

The abstraction layer’s purpose is to act as an interpreter between the game and the operating
system and its subsequent hardware. This way game developers don't need to take operating
systems into much account when writing the core of the game, but rather have a system
specifically in charge of handling such matters so they can reuse the higher level systems in
the architecture for each different platform.

10

4.0 Sequence Diagram analysis

4.1 Sequence Diagram I

Figure 6: Seq1. (TUX jumps up)

As is shown in figure Seq1, the sequence of jumping up is explored.

First, by pressing the up key from an input device, the game states subsystem receives the
command and forwards a checking request to the physics engine. The physics engine will be
responsible for producing a return data set that contains the rules for jumping and collision
detection. Based on the rules acquired from physics engine, the game states subsystem will
then call the tux.jump() function from game data subsystem using the rules as parameters,
getting the resulting position of tux as the return value.

After this, the graphics and audio subsystems will respond to the request from game states by
producing required graphical and audio effects and their reference paths. Finally, user
interface will be updated with new frames and sound effects via the paths provided by the
game state.

11

4.2 Sequence Diagram II

Figure 7: Seq2. (Player dies running into a monster)

As for figure Seq2, this sequence diagram explains how a tux dies from running into a
monster.

Followed by a user input, which is pressing the right key, game states will call the walkright
method inside of the tux object from game data, resulting a position update to the tux. After
this, a request for collision checking from game states is going to check the collisions for this
move. Resulting value indicates that the tux has collided with certain monster and will end up
to be dead.
The graphics and audio engine, again, returns the paths for the dying animation and sound of
tux upon requests, which are from the game states subsystem. The animation and sound will
be played via the user interface after the paths being delivered to game states successfully.

5.0 Concurrency

For games such as SuperTux, there are some concurrencies as they are inevitable in the
gameplay. Increasing concurrency is encouraged as this will increase the performance of the
game. (Ref –google books, p473/4) This can be done by grouping together systems together,
for example by event-driven (ex. gameplay) and data-driven (graphics and physics).

12

For our architecture we have found three concurrencies between: audio and graphics,
graphics and gameplay, and, user input and gameplay.

5.1 Audio and Graphics

The concurrency between audio and graphics is that they complement each other, and so they
need to be played at the same time, without delay.

5.2 Graphics and Gameplay

During the gameplay, the game will be calculating elements and will be displaying the
resultant graphics on the screen.

5.3 User Input and Gameplay

For the gameplay of SuperTux, user input is required to generate output and to update the
game state, so no delay is tolerated between UI and gameplay.

6.0 Lessons Learned

Working on the conceptual architecture of SuperTux, our team has learned some lessons both
about the game and how the team should be working together.

First of all, as a team, most members weren’t familiar with the game, however everyone
focused on their research before playing the game at all. After when everyone was familiar
with the game, we had were able to see things more clearly, which helped us come up with
our game architecture solution. While doing so we have learned that layered architectures
were common in video games, which resulted in the architecture being a mix between a
layered and an object oriented architecture. Finally, we have found that brainstorming
together and talking about our ideas were more helpful at times than doing research
individually.

We realized, in the future, we should have more meetings to discuss our ideas and have
multiple meetings to do so.

13

7.0 Conclusion
The most significant takeaway from this report is the team’s conceptual architecture. A
mixture of two architectural styles were utilized; object-oriented and layered. Object-oriented
style was used because 2D platformers like SuperTux have object oriented programming (this
was also seen in the game’s actual development logs), and the way the different systems
interact and depend on each other in a hierarchical manner. A layered architecture was also
incorporated, as this architecture style is frequently used in video games, and the
dependencies of the systems naturally fit in a layered style. The combination of these two
architecture provides a very clear idea of how the game operates with high cohesion, and
allows for systems to be added or altered easily.

The user interface is what the user sees on the computer screen, hears through their speakers,
and what they interact with. It depends primarily on the game state, which handles all logic
and events of the game. The game state runs the menu, sets up and runs levels and the world
map, and can run the level editor. This is done by retrieving game specific assets from Game
Data (levels and their content, player stats, etc.), checking for user input, and relying upon
third party engines to handle specific, computationally intensive information. Finally, there is
an abstraction layer that acts as the interpreter/translator between the core of the game and the
different operating systems it can run on.

14

References
Application_programming_interface. (n.d.). In Wikipedia. Retrieved October 22, 2017, from

https://en.wikipedia.org/wiki/Application_programming_interface

Game Object. (2010). In supertux.lethargik.org. Retrieved October 22, 2017, from
supertux.lethargik.org/wiki/Game_object.

Gregory Jason. (2009). Chapter 1.4-1.7. In Game Engine Architecture. Retrieved from

https://326tba.weebly.com/uploads/1/1/2/4/112445829/game_engine_architecture_1.4_1.7.pdf

Middleware. (n.d.).In Wikipedia. Retrieved October 22, 2017, from

https://en.wikipedia.org/wiki/Middleware

SuperTux Wiki .(2016). In Github.Retrieved October 22, 2017, from

https://github.com/SuperTux/supertux/wiki

15

https://en.wikipedia.org/wiki/Application_programming_interface
http://supertux.lethargik.org/wiki/Game_object.
https://326tba.weebly.com/uploads/1/1/2/4/112445829/game_engine_architecture_1.4_1.7.pdf
https://en.wikipedia.org/wiki/Middleware
https://en.wikipedia.org/wiki/Middleware
https://github.com/SuperTux/supertux/wiki

