
1.4. Engine Differences Across Genres 13

generality and optimality still exists. A game can always be made more im-
pressive by fine-tuning the engine to the specific requirements and constraints
of a particular game and/or hardware platform.

1.4 Engine Differences Across Genres

Game engines are typically somewhat genre specific. An engine designed
for a two-person fighting game in a boxing ring will be very different from a
massively multiplayer online game (MMOG) engine or a first-person shooter
(FPS) engine or a real-time strategy (RTS) engine. However, there is also a
great deal of overlap—all 3D games, regardless of genre, require some form
of low-level user input from the joypad, keyboard and/or mouse, some form
of 3D mesh rendering, some form of heads-up display (HUD) including text
rendering in a variety of fonts, a powerful audio system, and the list goes
on. So while the Unreal Engine, for example, was designed for first-person
shooter games, it has been used successfully to construct games in a number
of other genres as well, including the wildly popular third-person shooter
franchise Gears of War by Epic Games and the smash hits Batman: Arkham
Asylum and Batman: Arkham City by Rocksteady Studios.

Let’s take a look at some of the most common game genres and explore
some examples of the technology requirements particular to each.

1.4.1 First-Person Shooters (FPS)

The first-person shooter (FPS) genre is typified by games like Quake, Unreal
Tournament, Half-Life, Counter-Strike and Battlefield (see Figure 1.2). These
games have historically involved relatively slow on-foot roaming of a po-
tentially large but primarily corridor-based world. However, modern first-
person shooters can take place in a wide variety of virtual environments in-
cluding vast open outdoor areas and confined indoor areas. Modern FPS
traversal mechanics can include on-foot locomotion, rail-confined or free-
roaming ground vehicles, hovercraft, boats and aircraft. For an overview of
this genre, see http://en.wikipedia.org/wiki/First-person_shooter.

First-person games are typically some of the most technologically chal-
lenging to build, probably rivaled in complexity only by third-person shooter/
action/platformer games and massively multiplayer games. This is because
first-person shooters aim to provide their players with the illusion of being
immersed in a detailed, hyperrealistic world. It is not surprising that many of
the game industry’s big technological innovations arose out of the games in
this genre.



14 1. Introduction

Figure 1.2. Battlefield 4 by Electronic Arts/DICE (PC, Xbox 360, PlayStation 3, Xbox One, PlaySta-
tion 4). (See Color Plate I.)

First-person shooters typically focus on technologies such as:

• efficient rendering of large 3D virtual worlds;
• a responsive camera control/aiming mechanic;
• high-fidelity animations of the player’s virtual arms and weapons;
• a wide range of powerful handheld weaponry;
• a forgiving player character motion and collision model, which often

gives these games a “floaty” feel;
• high-fidelity animations and artificial intelligence for the non-player

characters (NPCs)—the player’s enemies and allies; and
• small-scale online multiplayer capabilities (typically supporting up to

64 simultaneous players), and the ubiquitous “death match” gameplay
mode.

The rendering technology employed by first-person shooters is almost al-
ways highly optimized and carefully tuned to the particular type of environ-
ment being rendered. For example, indoor “dungeon crawl” games often em-
ploy binary space partitioning trees or portal-based rendering systems. Out-
door FPS games use other kinds of rendering optimizations such as occlusion
culling, or an offline sectorization of the game world with manual or auto-
mated specification of which target sectors are visible from each source sector.



1.4. Engine Differences Across Genres 15

Of course, immersing a player in a hyperrealistic game world requires
much more than just optimized high-quality graphics technology. The charac-
ter animations, audio and music, rigid body physics, in-game cinematics and
myriad other technologies must all be cutting-edge in a first-person shooter.
So this genre has some of the most stringent and broad technology require-
ments in the industry.

1.4.2 Platformers and Other Third-Person Games

“Platformer” is the term applied to third-person character-based action games
where jumping from platform to platform is the primary gameplay mechanic.
Typical games from the 2D era include Space Panic, Donkey Kong, Pitfall! and
Super Mario Brothers. The 3D era includes platformers like Super Mario 64,
Crash Bandicoot, Rayman 2, Sonic the Hedgehog, the Jak and Daxter series (Fig-
ure 1.3), the Ratchet & Clank series and Super Mario Galaxy. See http://en.
wikipedia.org/wiki/Platformer for an in-depth discussion of this genre.

In terms of their technological requirements, platformers can usually be
lumped together with third-person shooters and third-person action/adven-

Figure 1.3. Jak II by Naughty Dog (Jak, Daxter, Jak and Daxter, and Jak II © 2003, 2013/™ SCEA.
Created and developed by Naughty Dog, PlayStation 2). (See Color Plate II.)



16 1. Introduction

Figure 1.4. Gears of War 3 by Epic Games (Xbox 360). (See Color Plate III.)

ture games like Dead Space 2, Gears of War 3 (Figure 1.4), Red Dead Remption,
the Uncharted series, the Resident Evil series, The Last of Us, and the list goes on.

Third-person character-based games have a lot in common with first-per-
son shooters, but a great deal more emphasis is placed on the main character’s
abilities and locomotion modes. In addition, high-fidelity full-body character
animations are required for the player’s avatar, as opposed to the somewhat
less-taxing animation requirements of the “floating arms” in a typical FPS
game. It’s important to note here that almost all first-person shooters have
an online multiplayer component, so a full-body player avatar must be ren-
dered in addition to the first-person arms. However, the fidelity of these FPS
player avatars is usually not comparable to the fidelity of the non-player char-
acters in these same games; nor can it be compared to the fidelity of the player
avatar in a third-person game.

In a platformer, the main character is often cartoon-like and not particu-
larly realistic or high-resolution. However, third-person shooters often fea-
ture a highly realistic humanoid player character. In both cases, the player
character typically has a very rich set of actions and animations.

Some of the technologies specifically focused on by games in this genre
include:



1.4. Engine Differences Across Genres 17

• moving platforms, ladders, ropes, trellises and other interesting locomo-
tion modes;

• puzzle-like environmental elements;
• a third-person “follow camera” which stays focused on the player char-

acter and whose rotation is typically controlled by the human player via
the right joypad stick (on a console) or the mouse (on a PC—note that
while there are a number of popular third-person shooters on a PC, the
platformer genre exists almost exclusively on consoles); and

• a complex camera collision system for ensuring that the view point never
“clips” through background geometry or dynamic foreground objects.

1.4.3 Fighting Games

Fighting games are typically two-player games involving humanoid charac-
ters pummeling each other in a ring of some sort. The genre is typified by
games like Soul Calibur and Tekken 3 (see Figure 1.5). The Wikipedia page
http://en.wikipedia.org/wiki/Fighting_game provides an overview of this
genre.

Traditionally games in the fighting genre have focused their technology
efforts on:

Figure 1.5. Tekken 3 by Namco (PlayStation). (See Color Plate IV.)



18 1. Introduction

• a rich set of fighting animations;

• accurate hit detection;

• a user input system capable of detecting complex button and joystick
combinations; and

• crowds, but otherwise relatively static backgrounds.

Since the 3D world in these games is small and the camera is centered
on the action at all times, historically these games have had little or no need
for world subdivision or occlusion culling. They would likewise not be ex-
pected to employ advanced three-dimensional audio propagation models, for
example.

State-of-the-art fighting games like EA’s Fight Night Round 4 (Figure 1.6)
have upped the technological ante with features like:

• high-definition character graphics, including realistic skin shaders with
subsurface scattering and sweat effects;

• high-fidelity character animations; and

• physics-based cloth and hair simulations for the characters.

It’s important to note that some fighting games like Heavenly Sword take
place in a large-scale virtual world, not a confined arena. In fact, many people
consider this to be a separate genre, sometimes called a brawler. This kind of

Figure 1.6. Fight Night Round 4 by EA (PlayStation 3). (See Color Plate V.)



1.4. Engine Differences Across Genres 19

fighting game can have technical requirements more akin to those of a third-
person shooter or real-time strategy game.

1.4.4 Racing Games

The racing genre encompasses all games whose primary task is driving a
car or other vehicle on some kind of track. The genre has many subcat-
egories. Simulation-focused racing games (“sims”) aim to provide a driv-
ing experience that is as realistic as possible (e.g., Gran Turismo). Arcade
racers favor over-the-top fun over realism (e.g., San Francisco Rush, Cruis’n
USA, Hydro Thunder). One subgenre explores the subculture of street rac-
ing with tricked out consumer vehicles (e.g., Need for Speed, Juiced). Kart
racing is a subcategory in which popular characters from platformer games
or cartoon characters from TV are re-cast as the drivers of whacky vehicles
(e.g., Mario Kart, Jak X, Freaky Flyers). Racing games need not always in-
volve time-based competition. Some kart racing games, for example, offer
modes in which players shoot at one another, collect loot or engage in a va-
riety of other timed and untimed tasks. For a discussion of this genre, see
http://en.wikipedia.org/wiki/Racing_game.

A racing game is often very linear, much like older FPS games. However,
travel speed is generally much faster than in an FPS. Therefore, more focus is
placed on very long corridor-based tracks, or looped tracks, sometimes with
various alternate routes and secret short-cuts. Racing games usually focus all
their graphic detail on the vehicles, track and immediate surroundings. How-
ever, kart racers also devote significant rendering and animation bandwidth
to the characters driving the vehicles. Figure 1.7 shows a screenshot from
the next installment in the well-known Gran Turismo racing game series, Gran
Turismo 6, developed by Polyphony Digital and published by Sony Computer
Entertainment.

Some of the technological properties of a typical racing game include the
following techniques:

• Various “tricks” are used when rendering distant background elements,
such as employing two-dimensional cards for trees, hills and mountains.

• The track is often broken down into relatively simple two-dimensional
regions called “sectors.” These data structures are used to optimize
rendering and visibility determination, to aid in artificial intelligence
and path finding for non-human-controlled vehicles, and to solve many
other technical problems.

• The camera typically follows behind the vehicle for a third-person per-
spective, or is sometimes situated inside the cockpit first-person style.



20 1. Introduction

Figure 1.7. Gran Turismo 6 by Polyphony Digital (PlayStation 3). (See Color Plate VI.)

• When the track involves tunnels and other “tight” spaces, a good deal
of effort is often put into ensuring that the camera does not collide with
background geometry.

1.4.5 Real-Time Strategy (RTS)

The modern real-time strategy (RTS) genre was arguably defined by Dune II:
The Building of a Dynasty (1992). Other games in this genre include Warcraft,
Command & Conquer, Age of Empires and Starcraft. In this genre, the player
deploys the battle units in his or her arsenal strategically across a large playing
field in an attempt to overwhelm his or her opponent. The game world is
typically displayed at an oblique top-down viewing angle. For a discussion
of this genre, see http://en.wikipedia.org/wiki/Real-time_strategy.

The RTS player is usually prevented from significantly changing the view-
ing angle in order to see across large distances. This restriction permits de-
velopers to employ various optimizations in the rendering engine of an RTS
game.

Older games in the genre employed a grid-based (cell-based) world con-
struction, and an orthographic projection was used to greatly simplify the ren-
derer. For example, Figure 1.8 shows a screenshot from the classic RTS Age of
Empires.

Modern RTS games sometimes use perspective projection and a true 3D
world, but they may still employ a grid layout system to ensure that units and
background elements, such as buildings, align with one another properly. A
popular example, Command & Conquer 3, is shown in Figure 1.9.



1.4. Engine Differences Across Genres 21

Figure 1.8. Age of Empires by Ensemble Studios (PC). (See Color Plate VII.)

Figure 1.9. Command & Conquer 3 by EA Los Angeles (PC, Xbox 360). (See Color Plate VIII.)



22 1. Introduction

Some other common practices in RTS games include the following tech-
niques:

• Each unit is relatively low-res, so that the game can support large num-
bers of them on-screen at once.

• Height-field terrain is usually the canvas upon which the game is de-
signed and played.

• The player is often allowed to build new structures on the terrain in
addition to deploying his or her forces.

• User interaction is typically via single-click and area-based selection of
units, plus menus or toolbars containing commands, equipment, unit
types, building types, etc.

1.4.6 Massively Multiplayer Online Games (MMOG)

The massively multiplayer online game (MMOG or just MMO) genre is typ-
ified by games like Guild Wars 2 (AreaNet/NCsoft), EverQuest (989 Studios/
SOE), World of Warcraft (Blizzard) and Star Wars Galaxies (SOE/Lucas Arts), to
name a few. An MMO is defined as any game that supports huge numbers of
simultaneous players (from thousands to hundreds of thousands), usually all
playing in one very large, persistent virtual world (i.e., a world whose internal
state persists for very long periods of time, far beyond that of any one player’s
gameplay session). Otherwise, the gameplay experience of an MMO is often
similar to that of their small-scale multiplayer counterparts. Subcategories
of this genre include MMO role-playing games (MMORPG), MMO real-time
strategy games (MMORTS) and MMO first-person shooters (MMOFPS). For
a discussion of this genre, see http://en.wikipedia.org/wiki/MMOG. Fig-
ure 1.10 shows a screenshot from the hugely popular MMORPG World of War-
craft.

At the heart of all MMOGs is a very powerful battery of servers. These
servers maintain the authoritative state of the game world, manage users sign-
ing in and out of the game, provide inter-user chat or voice-over-IP (VoIP) ser-
vices and more. Almost all MMOGs require users to pay some kind of regular
subscription fee in order to play, and they may offer micro-transactions within
the game world or out-of-game as well. Hence, perhaps the most important
role of the central server is to handle the billing and micro-transactions which
serve as the game developer’s primary source of revenue.

Graphics fidelity in an MMO is almost always lower than its non-massively
multiplayer counterparts, as a result of the huge world sizes and extremely
large numbers of users supported by these kinds of games.



1.4. Engine Differences Across Genres 23

Figure 1.10. World of Warcraft by Blizzard Entertainment (PC). (See Color Plate IX.)

Figure 1.11 shows a screen from Bungie’s latest highly anticipated FPS
game, Destiny. This game has been called an MMOFPS because it incorpo-
rates some aspects of the MMO genre. However, Bungie prefers to call it a
“shared world” game because unlike a traditional MMO, in which a player
can see and interact with literally any other player on a particular server, Des-
tiny provides “on-the-fly match-making.” This permits the player to interact

Figure 1.11. Destiny by Bungie (Xbox 360, PlayStation 3, Xbox One, PlayStation 4). (See Color
Plate X.)



24 1. Introduction

only with the other players with whom they have been matched by the server.
Also unlike a traditional MMO, the graphics fidelity in Destiny promises to be
among the best of its generation.

1.4.7 Player-Authored Content

As social media takes off, games are becoming more and more colaborative in
nature. A recent trend in game design is toward player-authored content. For
example, Media Molecule’s Little Big Planet and Little Big Planet 2 (Figure 1.12)
are technically puzzle platformers, but their most notable and unique feature
is that they encourage players to create, publish and share their own game
worlds. Media Molecule’s latest instalment in this up-and-coming genre is
Tearaway for the PlayStation Vita (Figure 1.13).

Perhaps the most popular game today in the player-created content genre
is Minecraft (Figure 1.14). The brilliance of this game lies in its simplicity:
Minecraft game worlds are constructed from simple cubic voxel-like elements
mapped with low-resolution textures to mimic various materials. Blocks can
be solid, or they can contain items such as torches, anvils, signs, fences and
panes of glass. The game world is populated with one or more player charac-
ters, animals such as chickens and pigs, and various “mobs”—good guys like
villagers and bad guys like zombies and the ubiquitous creepers who sneak up
on unsuspecting players and explode (only scant moments after warning the
player with the “hiss” of a burning fuse).

Figure 1.12. Little Big Planet 2 by Media Molecule, © 2014 Sony Computer Entertainment Europe
(PlayStation 3). (See Color Plate XI.)



1.4. Engine Differences Across Genres 25

Figure 1.13. Tearaway by Media Molecule, © 2014 Sony Computer Entertainment Europe (PlaySta-
tion Vita). (See Color Plate XII.)

Players can create a randomized world in Minecraft and then dig into the
generated terrain to create tunnels and caverns. They can also construct their
own structures, ranging from simple terrain and foliage to vast and complex
buildings and machinery. Perhaps the biggest stroke of genious in Minecraft
is redstone. This material serves as “wiring,” allowing players to lay down

Figure 1.14. Minecraft by Markus “Notch” Persson / Mojang AB (PC, Mac, Xbox 360, PlayStation 3,
PlayStation Vita, iOS). (See Color Plate XIII.)



26 1. Introduction

circuitry that controls pistons, hoppers, mine carts and other dynamic ele-
ments in the game. As a result, players can create virtually anything they can
imagine, and then share their worlds with their friends by hosting a server
and inviting them to play online.

1.4.8 Other Genres

There are of course many other game genres which we won’t cover in depth
here. Some examples include:

• sports, with subgenres for each major sport (football, baseball, soccer,
golf, etc.);

• role-playing games (RPG);

• God games, like Populous and Black & White;

• environmental/social simulation games, like SimCity or The Sims;

• puzzle games like Tetris;

• conversions of non-electronic games, like chess, card games, go, etc.;

• web-based games, such as those offered at Electronic Arts’ Pogo site;

and the list goes on.
We have seen that each game genre has its own particular technological re-

quirements. This explains why game engines have traditionally differed quite
a bit from genre to genre. However, there is also a great deal of technological
overlap between genres, especially within the context of a single hardware
platform. With the advent of more and more powerful hardware, differences
between genres that arose because of optimization concerns are beginning to
evaporate. It is therefore becoming increasingly possible to reuse the same en-
gine technology across disparate genres, and even across disparate hardware
platforms.

1.5 Game Engine Survey

1.5.1 The Quake Family of Engines

The first 3D first-person shooter (FPS) game is generally accepted to be Castle
Wolfenstein 3D (1992). Written by id Software of Texas for the PC platform, this
game led the game industry in a new and exciting direction. Id Software went
on to create Doom, Quake, Quake II and Quake III. All of these engines are very
similar in architecture, and I will refer to them as the Quake family of engines.
Quake technology has been used to create many other games and even other



1.5. Game Engine Survey 27

engines. For example, the lineage of Medal of Honor for the PC platform goes
something like this:

• Quake III (Id);
• Sin (Ritual);
• F.A.K.K. 2 (Ritual);
• Medal of Honor: Allied Assault (2015 & Dreamworks Interactive); and
• Medal of Honor: Pacific Assault (Electronic Arts, Los Angeles).

Many other games based on Quake technology follow equally circuitous
paths through many different games and studios. In fact, Valve’s Source en-
gine (used to create the Half-Life games) also has distant roots in Quake tech-
nology.

The Quake and Quake II source code is freely available, and the original
Quake engines are reasonably well architected and “clean” (although they are
of course a bit outdated and written entirely in C). These code bases serve
as great examples of how industrial-strength game engines are built. The
full source code to Quake and Quake II is available at https://github.com/
id-Software/Quake-2.

If you own the Quake and/or Quake II games, you can actually build the
code using Microsoft Visual Studio and run the game under the debugger us-
ing the real game assets from the disk. This can be incredibly instructive. You
can set breakpoints, run the game and then analyze how the engine actually
works by stepping through the code. I highly recommend downloading one
or both of these engines and analyzing the source code in this manner.

1.5.2 The Unreal Family of Engines

Epic Games, Inc. burst onto the FPS scene in 1998 with its legendary game Un-
real. Since then, the Unreal Engine has become a major competitor to Quake
technology in the FPS space. Unreal Engine 2 (UE2) is the basis for Unreal
Tournament 2004 (UT2004) and has been used for countless “mods,” university
projects and commercial games. Unreal Engine 4 (UE4) is the latest evolution-
ary step, boasting some of the best tools and richest engine feature sets in the
industry, including a convenient and powerful graphical user interface for
creating shaders and a graphical user interface for game logic programming
called Kismet. Many games are being developed with UE4 lately, including of
course Epic’s popular Gears of War.

The Unreal Engine has become known for its extensive feature set and
cohesive, easy-to-use tools. The Unreal Engine is not perfect, and most devel-
opers modify it in various ways to run their game optimally on a particular



28 1. Introduction

hardware platform. However, Unreal is an incredibly powerful prototyping
tool and commercial game development platform, and it can be used to build
virtually any 3D first-person or third-person game (not to mention games in
other genres as well).

The Unreal Developer Network (UDN) provides a rich set of documenta-
tion and other information about all released versions of the Unreal Engine
(see http://udn.epicgames.com/Main/WebHome.html). Some documenta-
tion is freely available. However, access to the full documentation for the
latest version of the Unreal Engine is generally restricted to licensees of the
engine. There are plenty of other useful websites and wikis that cover the Un-
real Engine. One popular one is http://www.beyondunreal.com.

Thankfully, Epic now offers full access to Unreal Engine 4, source code and
all, for a low monthly subscription fee plus a cut of your game’s profits if it
ships. This makes UE4 a viable choice for small independent game studios.

1.5.3 The Half-Life Source Engine

Source is the game engine that drives the smash hit Half-Life 2 and its sequels
HL2: Episode One nad HL2: Episode Two, Team Fortress 2 and Portal (shipped
together under the title The Orange Box). Source is a high-quality engine, ri-
valing Unreal Engine 4 in terms of graphics capabilities and tool set.

1.5.4 DICE’s Frostbite

The Frostbite engine grew out of DICE’s efforts to create a game engine for
Battlefield Bad Company in 2006. Since then, the Frostbite engine has become
the most widely adopted engine within Electronic Arts (EA); it is used by
many of EA’s key franchises including Mass Effect, Battlefield, Need for Speed
and Dragon Age. Frostbite boasts a powerful unified asset creation tool called
FrostEd, a powerful tools pipeline known as Backend Services, and a powerful
runtime game engine. At the time this was written, the latest version of the
engine is Frostbite 3, which is being used on DICE’s popular title Battlefield 4
for the PC, Xbox 360, Xbox One, PlayStation 3 and PlayStation 4, along with
new games in the Command & Conquer, Dragon Age and Mass Effect franchises.

1.5.5 CryENGINE

Crytek originally developed their powerful game engine known as CryEN-
GINE as a tech demo for Nvidia. When the potential of the technology was
recognized, Crytek turned the demo into a complete game and Far Cry was
born. Since then, many games have been made with CryENGINE including
Crysis, Codename Kingdoms, Warface and Ryse: Son of Rome. Over the years the



1.5. Game Engine Survey 29

engine has evolved into what is now Crytek’s latest offering, CryENGINE 3.
This powerful game development platform offers a powerful suite of asset-
creation tools and a feature-rich runtime engine featuring high-quality real-
time graphics. CryENGINE 3 can be used to make games targeting a wide
range of platforms including Xbox One, Xbox 360, PlayStation 4, PlayStation 3,
Wii U and PC.

1.5.6 Sony’s PhyreEngine

In an effort to make developing games for Sony’s PlayStation 3 platform more
accessible, Sony introduced PhyreEngine at the Game Developer’s Confer-
ence (GDC) in 2008. As of 2013, PhyreEngine has evolved into a powerful and
full-featured game engine, supporting an impressive array of features includ-
ing advanced lighting and deferred rendering. It has been used by many stu-
dios to build over 90 published titles, including thatgamecompany’s hits flOw,
Flower and Journey, VectorCell’s AMY, and From Software’s Demon’s Souls and
Dark Souls. PhyreEngine now supports Sony’s PlayStation 4, PlayStation 3,
PlayStation 2, PlayStation Vita and PSP platforms. PhyreEngine 3.5 gives de-
velopers access to the power of the highly parallel Cell architecture on PS3
and the advanced compute capabilities of the PS4, along with a streamlined
new world editor and other powerful game development tools. It is available
free of charge to any licensed Sony developer as part of the PlayStation SDK.

1.5.7 Microsoft’s XNA Game Studio

Microsoft’s XNA Game Studio is an easy-to-use and highly accessible game
development platform aimed at encouraging players to create their own games
and share them with the online gaming community, much as YouTube encour-
ages the creation and sharing of home-made videos.

XNA is based on Microsoft’s C# language and the Common Language
Runtime (CLR). The primary development environment is Visual Studio or
its free counterpart, Visual Studio Express. Everything from source code to
game art assets are managed within Visual Studio. With XNA, developers
can create games for the PC platform and Microsoft’s Xbox 360 console. After
paying a modest fee, XNA games can be uploaded to the Xbox Live network
and shared with friends. By providing excellent tools at essentially zero cost,
Microsoft has brilliantly opened the floodgates for the average person to cre-
ate new games.

1.5.8 Unity

Unity is a powerful cross-platform game development environment and run-
time engine supporting a wide range of platforms. Using Unity, developers



30 1. Introduction

can deploy their games on mobile platforms (Apple iOS, Google Android,
Windows phone and BlackBerry 10 devices), consoles (Microsoft Xbox 360
and Xbox One, Sony PlayStation 3 and PlayStation 4, and Nintendo Wii and
Wii U) and desktop computers (Microsoft Windows, Apple Macintosh and
Linux). It even supports a Webplayer for deployment on all the major web
browsers.

Unity’s primary design goals are ease of development and cross-platform
game deployment. As such, Unity provides an easy-to-use integrated editor
environment, in which you can create and manipulate the assets and entities
that make up your game world and quickly preview your game in action right
there in the editor, or directly on your target hardware. Unity also provides
a powerful suite of tools for analyzing and optimizing your game on each
target platform, a comprehensive asset conditioning pipeline, and the ability
to manage the performance-quality trade-off uniquely on each deployment
platform. Unity supports scripting in JavaScript, C# or Boo; a powerful ani-
mation system supporting animation retargeting (the ability to play an anima-
tion authored for one character on a totally different character); and support
for networked multiplayer games.

Unity has been used to create a wide variety of published games, including
Deus Ex: The Fall by N-Fusion/Eidos Montreal, Chop Chop Runner by Gameri-
zon and Zombieville USA by Mika Mobile, Inc.

1.5.9 2D Game Engines for Non-programmers

Two-dimensional games have become incredibly popular with the recent ex-
plosion of casual web gaming and mobile gaming on platforms like Apple
iPhone/iPad and Google Android. A number of popular game/multimedia
authoring toolkits have become available, enabling small game studios and
independent developers to create 2D games for these platforms. These
toolkits emphasize ease of use and allow users to employ a graphical user
interface to create a game rather than requiring the use of a programming
language. Check out this YouTube video to get a feel for the kinds of games
you can create with these toolkits: https://www.youtube.com/watch?v=
3Zq1yo0lxOU

• Multimedia Fusion 2 (http://www.clickteam.com/website/world is a 2D
game/multimedia authoring toolkit developed by Clickteam. Fusion
is used by industry professionals to create games, screen savers and
other multimedia applications. Fusion and its simpler counterpart, The
Games Factory 2, are also used by educational camps like PlanetBravo
(http://www.planetbravo.com) to teach kids about game development



1.5. Game Engine Survey 31

and programming/logic concepts. Fusion supports iOS, Android, Flash,
Java and XNA platforms.

• Game Salad Creator (http://gamesalad.com/creator) is another graphical
game/multimedia authoring toolkit aimed at non-programmers, simi-
lar in many respects to Fusion.

• Scratch (http://scratch.mit.edu) is an authoring toolkit and graphical pro-
gramming language that can be used to create interactive demos and
simple games. It is a great way for young people to learn about pro-
gramming concepts such as conditionals, loops and event-driven pro-
gramming. Scratch was developed in 2003 by the Lifelong Kindergarten
group, led by Mitchel Resnick at the MIT Media Lab.

1.5.10 Other Commercial Engines

There are lots of other commercial game engines out there. Although indie
developers may not have the budget to purchase an engine, many of these
products have great online documentation and/or wikis that can serve as a
great source of information about game engines and game programming in
general. For example, check out the C4 Engine by Terathon Software (http://
www.terathon.com), a company founded by Eric Lengyel in 2001. Documen-
tation for the C4 Engine can be found on Terathon’s website, with additional
details on the C4 Engine wiki.

1.5.11 Proprietary In-House Engines

Many companies build and maintain proprietary in-house game engines. Elec-
tronic Arts built many of its RTS games on a proprietary engine called Sage,
developed at Westwood Studios. Naughty Dog’s Crash Bandicoot and Jak and
Daxter franchises were built on a proprietary engine custom tailored to the
PlayStation and PlayStation 2. For the Uncharted series, Naughty Dog devel-
oped a brand new engine custom tailored to the PlayStation 3 hardware. This
engine evolved and was ultimately used to create Naughty Dog’s latest hit,
The Last of Us, and it will continue to evolve as Naughty Dog transitions onto
the PlayStation 4. And of course, most commercially licensed game engines
like Quake, Source, Unreal Engine 3, CryENGINE 3 and Frostbite 2 all started
out as proprietary in-house engines.

1.5.12 Open Source Engines

Open source 3D game engines are engines built by amateur and professional
game developers and provided online for free. The term “open source” typi-



32 1. Introduction

cally implies that source code is freely available and that a somewhat open de-
velopment model is employed, meaning almost anyone can contribute code.
Licensing, if it exists at all, is often provided under the Gnu Public License
(GPL) or Lesser Gnu Public License (LGPL). The former permits code to be
freely used by anyone, as long as their code is also freely available; the latter
allows the code to be used even in proprietary for-profit applications. Lots of
other free and semi-free licensing schemes are also available for open source
projects.

There are a staggering number of open source engines available on the
web. Some are quite good, some are mediocre and some are just plain awful!
The list of game engines provided online at http://en.wikipedia.org/wiki/
List_of_game_engines will give you a feel for the sheer number of engines
that are out there.

OGRE is a well-architected, easy-to-learn and easy-to-use 3D rendering
engine. It boasts a fully featured 3D renderer including advanced lighting
and shadows, a good skeletal character animation system, a two-dimensional
overlay system for heads-up displays and graphical user interfaces, and a
post-processing system for full-screen effects like bloom. OGRE is, by its
authors’ own admission, not a full game engine, but it does provide
many of the foundational components required by pretty much any game
engine.

Some other well-known open source engines are listed here:

• Panda3D is a script-based engine. The engine’s primary interface is the
Python custom scripting language. It is designed to make prototyping
3D games and virtual worlds convenient and fast.

• Yake is a game engine built on top of OGRE.
• Crystal Space is a game engine with an extensible modular architecture.
• Torque and Irrlicht are also well-known game engines.

1.6 Runtime Engine Architecture

A game engine generally consists of a tool suite and a runtime component.
We’ll explore the architecture of the runtime piece first and then get into tool
architecture in the following section.

Figure 1.15 shows all of the major runtime components that make up a
typical 3D game engine. Yeah, it’s big! And this diagram doesn’t even account
for all the tools. Game engines are definitely large software systems.

Like all software systems, game engines are built in layers. Normally up-
per layers depend on lower layers, but not vice versa. When a lower layer



1.6. Runtime Engine Architecture 33

Gameplay Foundations

Event/Messaging 
System

Dynamic Game 
Object Model

Scripting System

World Loading / 
Streaming

Static World 
Elements

Real-Time Agent-
Based Simulation

High-Level Game Flow System/FSM

Skeletal Animation

Animation 
Decompression

Inverse 
Kinematics (IK)

Game-Specific 
Post-Processing

Sub-skeletal 
Animation

LERP and 
Additive Blending

Animation 
Playback

Animation State 
Tree & Layers

Profiling & Debugging

Memory & 
Performance Stats

In-Game Menus 
or Console

Recording & 
Playback

Hierarchical 
Object Attachment

3rd Party SDKs

Havok, PhysX, 
ODE etc.

DirectX, OpenGL, 
libgcm, Edge, etc. Boost++ STL / STLPort etc.Kynapse EuphoriaGranny, Havok 

Animation, etc.

OS

Drivers

Hardware (PC, XBOX360, PS3, etc.)

Platform Independence Layer

Atomic Data 
TypesPlatform Detection Collections and 

Iterators Threading LibraryHi-Res TimerFile System Network Transport 
Layer (UDP/TCP)

Graphics 
Wrappers

Physics/Coll. 
Wrapper

Core Systems

Module Start-Up 
and Shut-Down

Parsers (CSV, 
XML, etc.)

Assertions Unit Testing Math Library Strings and 
Hashed String Ids

Debug Printing 
and LoggingMemory Allocation

Engine Config
(INI files etc.)

Profiling / Stats 
Gathering

Object Handles / 
Unique Ids

RTTI / Reflection 
& Serialization

Curves & 
Surfaces Library

Random Number 
Generator

Localization 
Services

Asynchronous
File I/O

Movie Player

Memory Card I/O 
(Older Consoles)

Resources (Game Assets)

Resource Manager

Texture 
Resource

Material 
Resource

3D Model 
Resource

Font 
Resource

Collision 
Resource

Physics 
Parameters

Game
World/Map etc.Skeleton 

Resource

Human Interface 
Devices (HID)

Physical Device
I/O

Game-Specific 
Interface

Audio

Audio Playback / 
Management

DSP/Effects

3D Audio Model

Online Multiplayer

Match-Making & 
Game Mgmt.

Game State 
Replication

Object Authority 
PolicyScene Graph / Culling Optimizations

LOD SystemOcclusion & PVSSpatial Hash (BSP 
Tree, kd-Tree, …)

Visual Effects

Particle & Decal 
Systems Post Effects

HDR Lighting PRT Lighting, 
Subsurf. Scatter

Environment 
Mapping

Light Mapping & 
Dynamic Shadows

Front End

Heads-Up Display 
(HUD)

Full-Motion Video 
(FMV)

In-Game MenusIn-Game GUI Wrappers / Attract 
Mode

In-Game Cinematics 
(IGC)

Collision & Physics

Shapes/
Collidables

Rigid Bodies Phantoms

Ray/Shape 
Casting (Queries)

Forces & 
Constraints

Physics/Collision 
World

Ragdoll 
Physics

GAME-SPECIFIC SUBSYSTEMS

Game-Specific Rendering

Terrain Rendering Water Simulation 
& Rendering

etc.

Player Mechanics

Collision Manifold Movement

State Machine & 
Animation

Game Cameras

Player-Follow 
Camera

Debug Fly-
Through Cam

Fixed Cameras Scripted/Animated 
Cameras

AI

Sight Traces & 
Perception Path Finding (A*)

Goals & Decision-
Making

Actions
(Engine Interface)

Camera-Relative 
Controls (HID)

Weapons Power-Ups etc.Vehicles Puzzles

Low-Level Renderer

Primitive 
Submission

Viewports & 
Virtual Screens

Materials & 
Shaders

Texture and 
Surface Mgmt.

Graphics Device Interface

Static & Dynamic 
Lighting Cameras Text & Fonts

Debug Drawing
(Lines etc.)

Skeletal Mesh 
Rendering

Figure 1.15. Runtime game engine architecture.



34 1. Introduction

depends upon a higher layer, we call this a circular dependency. Dependency
cycles are to be avoided in any software system, because they lead to unde-
sirable coupling between systems, make the software untestable and inhibit
code reuse. This is especially true for a large-scale system like a game engine.

What follows is a brief overview of the components shown in the diagram
in Figure 1.15. The rest of this book will be spent investigating each of these
components in a great deal more depth and learning how these components
are usually integrated into a functional whole.

1.6.1 Target Hardware

The target hardware layer, shown in isolation in Figure 1.16, represents the
computer system or console on which the game will run. Typical platforms
include Microsoft Windows, Linux and MacOS-based PCs; mobile platforms
like the Apple iPhone and iPad, Android smart phones and tablets, Sony’s
PlayStation Vita and Amazon’s Kindle Fire (among others); and game con-
soles like Microsoft’s Xbox, Xbox 360 and Xbox One, Sony’s PlayStation, Play-
Station 2, PlayStation 3 and PlayStation 4, and Nintendo’s DS, GameCube, Wii
and Wii U. Most of the topics in this book are platform-agnostic, but we’ll also
touch on some of the design considerations peculiar to PC or console devel-
opment, where the distinctions are relevant.

Hardware (PC, XBOX360, PS3, etc.)

Figure 1.16. Hardware layer.

1.6.2 Device Drivers

As depicted in Figure 1.17, device drivers are low-level software components
provided by the operating system or hardware vendor. Drivers manage hard-
ware resources and shield the operating system and upper engine layers from
the details of communicating with the myriad variants of hardware devices
available.

Drivers

Figure 1.17. Device driver layer.



1.6. Runtime Engine Architecture 35

OS

Figure 1.18. Operating system layer.

1.6.3 Operating System

On a PC, the operating system (OS) is running all the time. It orchestrates the
execution of multiple programs on a single computer, one of which is your
game. The OS layer is shown in Figure 1.18. Operating systems like Microsoft
Windows employ a time-sliced approach to sharing the hardware with multi-
ple running programs, known as preemptive multitasking. This means that a
PC game can never assume it has full control of the hardware—it must “play
nice” with other programs in the system.

On a console, the operating system is often just a thin library layer that is
compiled directly into your game executable. On a console, the game typically
“owns” the entire machine. However, with the introduction of the Xbox 360
and PlayStation 3, this was no longer strictly the case. The operating sys-
tem on these consoles and their successors, the Xbox One and PlayStation 4
respectively, can interrupt the execution of your game, or take over certain
system resources, in order to display online messages, or to allow the player
to pause the game and bring up the PS3’s Xross Media Bar or the Xbox 360’s
dashboard, for example. So the gap between console and PC development is
gradually closing (for better or for worse).

1.6.4 Third-Party SDKs and Middleware

Most game engines leverage a number of third-party software development
kits (SDKs) and middleware, as shown in Figure 1.19. The functional or class-
based interface provided by an SDK is often called an application program-
ming interface (API). We will look at a few examples.

3rd Party SDKs

Havok, PhysX, 
ODE etc.

DirectX, OpenGL, 
libgcm, Edge, etc. Boost++ STL / STLPort etc.Kynapse EuphoriaGranny, Havok 

Animation, etc.

Figure 1.19. Third-party SDK layer.

1.6.4.1 Data Structures and Algorithms

Like any software system, games depend heavily on collection data structures
and algorithms to manipulate them. Here are a few examples of third-party
libraries which provide these kinds of services:



36 1. Introduction

• STL. The C++ standard template library provides a wealth of code and
algorithms for managing data structures, strings and stream-based I/O.

• STLport. This is a portable, optimized implementation of STL.

• Boost. Boost is a powerful data structures and algorithms library, de-
signed in the style of STL. (The online documentation for Boost is also a
great place to learn a great deal about computer science!)

• Loki. Loki is a powerful generic programming template library which is
exceedingly good at making your brain hurt!

Game developers are divided on the question of whether to use template
libraries like STL in their game engines. Some believe that the memory alloca-
tion patterns of STL, which are not conducive to high-performance program-
ming and tend to lead to memory fragmentation (see Section 5.2.1.4), make
STL unusable in a game. Others feel that the power and convenience of STL
outweigh its problems and that most of the problems can in fact be worked
around anyway. My personal belief is that STL is all right for use on a PC, be-
cause its advanced virtual memory system renders the need for careful mem-
ory allocation a bit less crucial (although one must still be very careful). On
a console, with limited or no virtual memory facilities and exorbitant cache-
miss costs, you’re probably better off writing custom data structures that have
predictable and/or limited memory allocation patterns. (And you certainly
won’t go far wrong doing the same on a PC game project either.)

1.6.4.2 Graphics

Most game rendering engines are built on top of a hardware interface library,
such as the following:

• Glide is the 3D graphics SDK for the old Voodoo graphics cards. This
SDK was popular prior to the era of hardware transform and lighting
(hardware T&L) which began with DirectX 7.

• OpenGL is a widely used portable 3D graphics SDK.

• DirectX is Microsoft’s 3D graphics SDK and primary rival to OpenGL.

• libgcm is a low-level direct interface to the PlayStation 3’s RSX graphics
hardware, which was provided by Sony as a more efficient alternative
to OpenGL.

• Edge is a powerful and highly efficient rendering and animation engine
produced by Naughty Dog and Sony for the PlayStation 3 and used by
a number of first- and third-party game studios.



1.6. Runtime Engine Architecture 37

1.6.4.3 Collision and Physics

Collision detection and rigid body dynamics (known simply as “physics”
in the game development community) are provided by the following well-
known SDKs:

• Havok is a popular industrial-strength physics and collision engine.
• PhysX is another popular industrial-strength physics and collision en-

gine, available for free download from NVIDIA.
• Open Dynamics Engine (ODE) is a well-known open source physics/col-

lision package.

1.6.4.4 Character Animation

A number of commercial animation packages exist, including but certainly
not limited to the following:

• Granny. Rad Game Tools’ popular Granny toolkit includes robust 3D
model and animation exporters for all the major 3D modeling and ani-
mation packages like Maya, 3D Studio MAX, etc., a runtime library for
reading and manipulating the exported model and animation data, and
a powerful runtime animation system. In my opinion, the Granny SDK
has the best-designed and most logical animation API of any I’ve seen,
commercial or proprietary, especially its excellent handling of time.

• Havok Animation. The line between physics and animation is becoming
increasingly blurred as characters become more and more realistic. The
company that makes the popular Havok physics SDK decided to create
a complimentary animation SDK, which makes bridging the physics-
animation gap much easier than it ever has been.

• Edge. The Edge library produced for the PS3 by the ICE team at Naughty
Dog, the Tools and Technology group of Sony Computer Entertainment
America, and Sony’s Advanced Technology Group in Europe includes
a powerful and efficient animation engine and an efficient geometry-
processing engine for rendering.

1.6.4.5 Biomechanical Character Models

• Endorphin and Euphoria. These are animation packages that produce
character motion using advanced biomechanical models of realistic hu-
man movement.

As we mentioned previously, the line between character animation and
physics is beginning to blur. Packages like Havok Animation try to marry



38 1. Introduction

physics and animation in a traditional manner, with a human animator pro-
viding the majority of the motion through a tool like Maya and with physics
augmenting that motion at runtime. But recently a firm called Natural Motion
Ltd. has produced a product that attempts to redefine how character motion
is handled in games and other forms of digital media.

Its first product, Endorphin, is a Maya plug-in that permits animators to
run full biomechanical simulations on characters and export the resulting an-
imations as if they had been hand animated. The biomechanical model ac-
counts for center of gravity, the character’s weight distribution, and detailed
knowledge of how a real human balances and moves under the influence of
gravity and other forces.

Its second product, Euphoria, is a real-time version of Endorphin intended
to produce physically and biomechanically accurate character motion at run-
time under the influence of unpredictable forces.

1.6.5 Platform Independence Layer

Most game engines are required to be capable of running on more than one
hardware platform. Companies like Electronic Arts and ActivisionBlizzard
Inc., for example, always target their games at a wide variety of platforms be-
cause it exposes their games to the largest possible market. Typically, the only
game studios that do not target at least two different platforms per game are
first-party studios, like Sony’s Naughty Dog and Insomniac studios. There-
fore, most game engines are architected with a platform independence layer,
like the one shown in Figure 1.20. This layer sits atop the hardware, drivers,
operating system and other third-party software and shields the rest of the
engine from the majority of knowledge of the underlying platform.

By wrapping or replacing the most commonly used standard C library
functions, operating system calls and other foundational application program-
ming interfaces (APIs), the platform independence layer ensures consistent
behavior across all hardware platforms. This is necessary because there is a
good deal of variation across platforms, even among “standardized” libraries
like the standard C library.

Platform Independence Layer

Atomic Data 
TypesPlatform Detection Collections and 

Iterators Threading LibraryHi-Res TimerFile System Network Transport 
Layer (UDP/TCP)

Graphics 
Wrappers

Physics/Coll. 
Wrapper

Figure 1.20. Platform independence layer.



1.6. Runtime Engine Architecture 39

Core Systems

Module Start-Up 
and Shut-Down

Parsers (CSV, 
XML, etc.)

Assertions Unit Testing Math Library Strings and 
Hashed String Ids

Debug Printing 
and LoggingMemory Allocation

Engine Config
(INI files etc.)

Profiling / Stats 
Gathering

Object Handles / 
Unique Ids

RTTI / Reflection 
& Serialization

Curves & 
Surfaces Library

Random Number 
Generator

Localization 
Services

Asynchronous
File I/O

Movie Player

Memory Card I/O 
(Older Consoles)

Figure 1.21. Core engine systems.

1.6.6 Core Systems

Every game engine, and really every large, complex C++ software application,
requires a grab bag of useful software utilities. We’ll categorize these under
the label “core systems.” A typical core systems layer is shown in Figure 1.21.
Here are a few examples of the facilities the core layer usually provides:

• Assertions are lines of error-checking code that are inserted to catch log-
ical mistakes and violations of the programmer’s original assumptions.
Assertion checks are usually stripped out of the final production build
of the game.

• Memory management. Virtually every game engine implements its own
custom memory allocation system(s) to ensure high-speed allocations
and deallocations and to limit the negative effects of memory fragmen-
tation (see Section 5.2.1.4).

• Math library. Games are by their nature highly mathematics-intensive.
As such, every game engine has at least one, if not many, math libraries.
These libraries provide facilities for vector and matrix math, quaternion
rotations, trigonometry, geometric operations with lines, rays, spheres,
frusta, etc., spline manipulation, numerical integration, solving systems
of equations and whatever other facilities the game programmers re-
quire.

• Custom data structures and algorithms. Unless an engine’s designers de-
cided to rely entirely on a third-party package such as STL, a suite of
tools for managing fundamental data structures (linked lists, dynamic
arrays, binary trees, hash maps, etc.) and algorithms (search, sort, etc.)
is usually required. These are often hand coded to minimize or elimi-
nate dynamic memory allocation and to ensure optimal runtime perfor-
mance on the target platform(s).

A detailed discussion of the most common core engine systems can be
found in Part II.



40 1. Introduction

1.6.7 Resource Manager

Present in every game engine in some form, the resource manager provides a
unified interface (or suite of interfaces) for accessing any and all types of game
assets and other engine input data. Some engines do this in a highly cen-
tralized and consistent manner (e.g., Unreal’s packages, OGRE’s Resource-
Manager class). Other engines take an ad hoc approach, often leaving it up
to the game programmer to directly access raw files on disk or within com-
pressed archives such as Quake’s PAK files. A typical resource manager layer
is depicted in Figure 1.22.

Resources (Game Assets)

Resource Manager

Texture 
Resource

Material 
Resource

3D Model 
Resource

Font
Resource

Collision 
Resource

Physics
Parameters

Game
World/Map etc.Skeleton 

Resource

Figure 1.22. Resource manager.

1.6.8 Rendering Engine

The rendering engine is one of the largest and most complex components of
any game engine. Renderers can be architected in many different ways. There
is no one accepted way to do it, although as we’ll see, most modern rendering
engines share some fundamental design philosophies, driven in large part by
the design of the 3D graphics hardware upon which they depend.

One common and effective approach to rendering engine design is to em-
ploy a layered architecture as follows.

1.6.8.1 Low-Level Renderer

The low-level renderer, shown in Figure 1.23, encompasses all of the raw ren-
dering facilities of the engine. At this level, the design is focused on rendering
a collection of geometric primitives as quickly and richly as possible, without
much regard for which portions of a scene may be visible. This component is
broken into various subcomponents, which are discussed below.

Graphics Device Interface

Graphics SDKs, such as DirectX and OpenGL, require a reasonable amount of
code to be written just to enumerate the available graphics devices, initialize
them, set up render surfaces (back-buffer, stencil buffer, etc.) and so on. This



1.6. Runtime Engine Architecture 41

Low-Level Renderer

Primitive
Submission

Viewports & 
Virtual Screens

Materials & 
Shaders

Texture and 
Surface Mgmt.

Graphics Device Interface

Static & Dynamic 
Lighting Cameras Text & Fonts

Debug Drawing
(Lines etc.)

Skeletal Mesh 
Rendering

Figure 1.23. Low-level rendering engine.

is typically handled by a component that I’ll call the graphics device interface
(although every engine uses its own terminology).

For a PC game engine, you also need code to integrate your renderer with
the Windows message loop. You typically write a “message pump” that ser-
vices Windows messages when they are pending and otherwise runs your
render loop over and over as fast as it can. This ties the game’s keyboard
polling loop to the renderer’s screen update loop. This coupling is undesir-
able, but with some effort it is possible to minimize the dependencies. We’ll
explore this topic in more depth later.

Other Renderer Components

The other components in the low-level renderer cooperate in order to collect
submissions of geometric primitives (sometimes called render packets), such as
meshes, line lists, point lists, particles, terrain patches, text strings and what-
ever else you want to draw, and render them as quickly as possible.

The low-level renderer usually provides a viewport abstraction with an as-
sociated camera-to-world matrix and 3D projection parameters, such as field
of view and the location of the near and far clip planes. The low-level renderer
also manages the state of the graphics hardware and the game’s shaders via
its material system and its dynamic lighting system. Each submitted primitive
is associated with a material and is affected by n dynamic lights. The mate-
rial describes the texture(s) used by the primitive, what device state settings
need to be in force, and which vertex and pixel shader to use when rendering
the primitive. The lights determine how dynamic lighting calculations will
be applied to the primitive. Lighting and shading is a complex topic, which
is covered in depth in many excellent books on computer graphics, includ-
ing [14], [44] and [1].



42 1. Introduction

k

Figure 1.24. A typical scene graph/spatial subdivision layer, for culling optimization.

1.6.8.2 Scene Graph/Culling Optimizations

The low-level renderer draws all of the geometry submitted to it, without
much regard for whether or not that geometry is actually visible (other than
back-face culling and clipping triangles to the camera frustum). A higher-
level component is usually needed in order to limit the number of primitives
submitted for rendering, based on some form of visibility determination. This
layer is shown in Figure 1.24.

For very small game worlds, a simple frustum cull (i.e., removing objects
that the camera cannot “see”) is probably all that is required. For larger game
worlds, a more advanced spatial subdivision data structure might be used to
improve rendering efficiency by allowing the potentially visible set (PVS) of
objects to be determined very quickly. Spatial subdivisions can take many
forms, including a binary space partitioning tree, a quadtree, an octree, a kd-
tree or a sphere hierarchy. A spatial subdivision is sometimes called a scene
graph, although technically the latter is a particular kind of data structure and
does not subsume the former. Portals or occlusion culling methods might also
be applied in this layer of the rendering engine.

Ideally, the low-level renderer should be completely agnostic to the type
of spatial subdivision or scene graph being used. This permits different game
teams to reuse the primitive submission code but to craft a PVS determination
system that is specific to the needs of each team’s game. The design of the
OGRE open source rendering engine (http://www.ogre3d.org) is a great ex-
ample of this principle in action. OGRE provides a plug-and-play scene graph
architecture. Game developers can either select from a number of preimple-
mented scene graph designs, or they can provide a custom scene graph im-
plementation.

1.6.8.3 Visual Effects

Modern game engines support a wide range of visual effects, as shown in
Figure 1.25, including:



1.6. Runtime Engine Architecture 43

Figure 1.25. Visual effects.

• particle systems (for smoke, fire, water splashes, etc.);
• decal systems (for bullet holes, foot prints, etc.);
• light mapping and environment mapping;
• dynamic shadows; and
• full-screen post effects, applied after the 3D scene has been rendered to

an off-screen buffer.

Some examples of full-screen post effects include:

• high dynamic range (HDR) tone mapping and bloom;
• full-screen anti-aliasing (FSAA); and
• color correction and color-shift effects, including bleach bypass, satura-

tion and desaturation effects, etc.

It is common for a game engine to have an effects system component that
manages the specialized rendering needs of particles, decals and other visual
effects. The particle and decal systems are usually distinct components of the
rendering engine and act as inputs to the low-level renderer. On the other
hand, light mapping, environment mapping and shadows are usually han-
dled internally within the rendering engine proper. Full-screen post effects
are either implemented as an integral part of the renderer or as a separate
component that operates on the renderer’s output buffers.

1.6.8.4 Front End

Most games employ some kind of 2D graphics overlaid on the 3D scene for
various purposes. These include:

• the game’s heads-up display (HUD);
• in-game menus, a console and/or other development tools, which may or

may not be shipped with the final product; and



44 1. Introduction

Front End

Heads-Up Display 
(HUD)

Full-Motion Video 
(FMV)

In-Game MenusIn-Game GUI Wrappers / Attract 
Mode

In-Game Cinematics 
(IGC)

Figure 1.26. Front end graphics.

• possibly an in-game graphical user interface (GUI), allowing the player to
manipulate his or her character’s inventory, configure units for battle or
perform other complex in-game tasks.

This layer is shown in Figure 1.26. Two-dimensional graphics like these are
usually implemented by drawing textured quads (pairs of triangles) with an
orthographic projection. Or they may be rendered in full 3D, with the quads
bill-boarded so they always face the camera.

We’ve also included the full-motion video (FMV) system in this layer. This
system is responsible for playing full-screen movies that have been recorded
earlier (either rendered with the game’s rendering engine or using another
rendering package).

A related system is the in-game cinematics (IGC) system. This component
typically allows cinematic sequences to be choreographed within the game it-
self, in full 3D. For example, as the player walks through a city, a conversation
between two key characters might be implemented as an in-game cinematic.
IGCs may or may not include the player character(s). They may be done as a
deliberate cut-away during which the player has no control, or they may be
subtly integrated into the game without the human player even realizing that
an IGC is taking place.

1.6.9 Profiling and Debugging Tools

Figure 1.27. Profiling
and debugging tools.

Games are real-time systems and, as such, game engineers often need to pro-
file the performance of their games in order to optimize performance. In ad-
dition, memory resources are usually scarce, so developers make heavy use
of memory analysis tools as well. The profiling and debugging layer, shown
in Figure 1.27, encompasses these tools and also includes in-game debugging
facilities, such as debug drawing, an in-game menu system or console and
the ability to record and play back gameplay for testing and debugging pur-
poses.



1.6. Runtime Engine Architecture 45

There are plenty of good general-purpose software profiling tools avail-
able, including:

• Intel’s VTune,

• IBM’s Quantify and Purify (part of the PurifyPlus tool suite), and

• Compuware’s Bounds Checker.

However, most game engines also incorporate a suite of custom profiling
and debugging tools. For example, they might include one or more of the
following:

• a mechanism for manually instrumenting the code, so that specific sec-
tions of code can be timed;

• a facility for displaying the profiling statistics on-screen while the game
is running;

• a facility for dumping performance stats to a text file or to an Excel
spreadsheet;

• a facility for determining how much memory is being used by the en-
gine, and by each subsystem, including various on-screen displays;

• the ability to dump memory usage, high water mark and leakage stats
when the game terminates and/or during gameplay;

• tools that allow debug print statements to be peppered throughout the
code, along with an ability to turn on or off different categories of debug
output and control the level of verbosity of the output; and

• the ability to record game events and then play them back. This is tough
to get right, but when done properly it can be a very valuable tool for
tracking down bugs.

The PlayStation 4 provides a powerful core dump facility to aid program-
mers in debugging crashes. The PlayStation 4 is always recording the last 15
seconds of gameplay video, to allow players to share their experiences via the
Share button on the controller. Because of this, the PS4’s core dump facility
automatically provides programmers not only with a complete call stack of
what the program was doing when it crashed, but also with a screenshot of
the moment of the crash and 15 seconds of video footage showing what was
happening just prior to the crash. Core dumps can be automatically uploaded
to the game developer’s servers whenever the game crashes, even after the
game has shipped. These facilities revolutionize the tasks of crash analysis
and repair.



46 1. Introduction

Figure 1.28. Collision and physics subsystem.

1.6.10 Collision and Physics

Collision detection is important for every game. Without it, objects would
interpenetrate, and it would be impossible to interact with the virtual world
in any reasonable way. Some games also include a realistic or semi-realistic
dynamics simulation. We call this the “physics system” in the game industry,
although the term rigid body dynamics is really more appropriate, because we
are usually only concerned with the motion (kinematics) of rigid bodies and
the forces and torques (dynamics) that cause this motion to occur. This layer
is depicted in Figure 1.28.

Collision and physics are usually quite tightly coupled. This is because
when collisions are detected, they are almost always resolved as part of the
physics integration and constraint satisfaction logic. Nowadays, very few
game companies write their own collision/physics engine. Instead, a third-
party SDK is typically integrated into the engine.

• Havok is the gold standard in the industry today. It is feature-rich and
performs well across the boards.

• PhysX by NVIDIA is another excellent collision and dynamics engine.
It was integrated into Unreal Engine 4 and is also available for free as
a stand-alone product for PC game development. PhysX was originally
designed as the interface to Ageia’s new physics accelerator chip. The
SDK is now owned and distributed by NVIDIA, and the company has
adapted PhysX to run on its latest GPUs.

Open source physics and collision engines are also available. Perhaps the
best-known of these is the Open Dynamics Engine (ODE). For more informa-



1.6. Runtime Engine Architecture 47

tion, see http://www.ode.org. I-Collide, V-Collide and RAPID are other pop-
ular non-commercial collision detection engines. All three were developed
at the University of North Carolina (UNC). For more information, see http://
www.cs.unc.edu/~geom/I_COLLIDE/index.html and http://www.cs.unc.
edu/∼geom/V_COLLIDE/index.html.

1.6.11 Animation

Any game that has organic or semi-organic characters (humans, animals, car-
toon characters or even robots) needs an animation system. There are five
basic types of animation used in games:

• sprite/texture animation,
• rigid body hierarchy animation,
• skeletal animation,
• vertex animation, and
• morph targets.

Skeletal animation permits a detailed 3D character mesh to be posed by an
animator using a relatively simple system of bones. As the bones move, the
vertices of the 3D mesh move with them. Although morph targets and vertex
animation are used in some engines, skeletal animation is the most prevalent
animation method in games today; as such, it will be our primary focus in this
book. A typical skeletal animation system is shown in Figure 1.29.

You’ll notice in Figure 1.15 that the skeletal mesh rendering component
bridges the gap between the renderer and the animation system. There is a
tight cooperation happening here, but the interface is very well defined. The

Skeletal Animation

Animation
Decompression

Inverse
Kinematics (IK)

Game-Specific
Post-Processing

Sub-skeletal
Animation

LERP and 
Additive Blending

Animation
Playback

Animation State 
Tree & Layers

Figure 1.29. Skeletal animation subsystem.



48 1. Introduction

animation system produces a pose for every bone in the skeleton, and then
these poses are passed to the rendering engine as a palette of matrices. The
renderer transforms each vertex by the matrix or matrices in the palette, in
order to generate a final blended vertex position. This process is known as
skinning.

There is also a tight coupling between the animation and physics systems
when rag dolls are employed. A rag doll is a limp (often dead) animated char-
acter, whose bodily motion is simulated by the physics system. The physics
system determines the positions and orientations of the various parts of the
body by treating them as a constrained system of rigid bodies. The animation
system calculates the palette of matrices required by the rendering engine in
order to draw the character on-screen.

1.6.12 Human Interface Devices (HID)

Figure 1.30. The
player input/output
system, also known
as the human in-
terface device (HID)
layer.

Every game needs to process input from the player, obtained from various
human interface devices (HIDs) including:

• the keyboard and mouse,

• a joypad, or

• other specialized game controllers, like steering wheels, fishing rods,
dance pads, the Wiimote, etc.

We sometimes call this component the player I/O component, because
we may also provide output to the player through the HID, such as force-
feedback/ rumble on a joypad or the audio produced by the Wiimote. A typ-
ical HID layer is shown in Figure 1.30.

The HID engine component is sometimes architected to divorce the low-
level details of the game controller(s) on a particular hardware platform from
the high-level game controls. It massages the raw data coming from the
hardware, introducing a dead zone around the center point of each joypad
stick, debouncing button-press inputs, detecting button-down and button-
up events, interpreting and smoothing accelerometer inputs (e.g., from the
PlayStation Dualshock controller) and more. It often provides a mechanism
allowing the player to customize the mapping between physical controls and
logical game functions. It sometimes also includes a system for detecting
chords (multiple buttons pressed together), sequences (buttons pressed in se-
quence within a certain time limit) and gestures (sequences of inputs from the
buttons, sticks, accelerometers, etc.).



1.6. Runtime Engine Architecture 49

1.6.13 Audio

Figure 1.31. Audio
subsystem.

Audio is just as important as graphics in any game engine. Unfortunately, au-
dio often gets less attention than rendering, physics, animation, AI and game-
play. Case in point: Programmers often develop their code with their speak-
ers turned off! (In fact, I’ve known quite a few game programmers who didn’t
even have speakers or headphones.) Nonetheless, no great game is complete
without a stunning audio engine. The audio layer is depicted in Figure 1.31.

Audio engines vary greatly in sophistication. Quake’s audio engine is
pretty basic, and game teams usually augment it with custom functionality
or replace it with an in-house solution. Unreal Engine 4 provides a reasonably
robust 3D audio rendering engine (discussed in detail in [40]), although its fea-
ture set is limited and many game teams will probably want to augment and
customize it to provide advanced game-specific features. For DirectX plat-
forms (PC, Xbox 360, Xbox One), Microsoft provides an excellent audio tool
suite called XACT, supported at runtime by their feature-rich XAudio2 and
X3DAudio APIs. Electronic Arts has developed an advanced, high-powered
audio engine internally called SoundR!OT. In conjunction with first-party stu-
dios like Naughty Dog, Sony Computer Entertainment America (SCEA) pro-
vides a powerful 3D audio engine called Scream, which has been used on a
number of PS3 titles including Naughty Dog’s Uncharted 3: Drake’s Deception
and The Last of Us. However, even if a game team uses a preexisting audio
engine, every game requires a great deal of custom software development,
integration work, fine-tuning and attention to detail in order to produce high-
quality audio in the final product.

1.6.14 Online Multiplayer/Networking

Many games permit multiple human players to play within a single virtual
world. Multiplayer games come in at least four basic flavors:

• Single-screen multiplayer. Two or more human interface devices (joypads,
keyboards, mice, etc.) are connected to a single arcade machine, PC or
console. Multiple player characters inhabit a single virtual world, and a
single camera keeps all player characters in frame simultaneously. Ex-
amples of this style of multiplayer gaming include Smash Brothers, Lego
Star Wars and Gauntlet.

• Split-screen multiplayer. Multiple player characters inhabit a single vir-
tual world, with multiple HIDs attached to a single game machine, but
each with its own camera, and the screen is divided into sections so that
each player can view his or her character.



50 1. Introduction

• Networked multiplayer. Multiple computers or consoles are networked
together, with each machine hosting one of the players.

• Massively multiplayer online games (MMOG). Literally hundreds of thou-
sands of users can be playing simultaneously within a giant, persistent,
online virtual world hosted by a powerful battery of central servers.

Figure 1.32. On-
line multiplayer net-
working subsystem.

The multiplayer networking layer is shown in Figure 1.32.
Multiplayer games are quite similar in many ways to their single-player

counterparts. However, support for multiple players can have a profound
impact on the design of certain game engine components. The game world
object model, renderer, human input device system, player control system
and animation systems are all affected. Retrofitting multiplayer features into
a preexisting single-player engine is certainly not impossible, although it can
be a daunting task. Still, many game teams have done it successfully. That
said, it is usually better to design multiplayer features from day one, if you
have that luxury.

It is interesting to note that going the other way—converting a multiplayer
game into a single-player game—is typically trivial. In fact, many game en-
gines treat single-player mode as a special case of a multiplayer game, in
which there happens to be only one player. The Quake engine is well known
for its client-on-top-of-server mode, in which a single executable, running on a
single PC, acts both as the client and the server in single-player campaigns.

1.6.15 Gameplay Foundation Systems

The term gameplay refers to the action that takes place in the game, the rules
that govern the virtual world in which the game takes place, the abilities of the
player character(s) (known as player mechanics) and of the other characters and
objects in the world, and the goals and objectives of the player(s). Gameplay
is typically implemented either in the native language in which the rest of the
engine is written or in a high-level scripting language—or sometimes both. To
bridge the gap between the gameplay code and the low-level engine systems
that we’ve discussed thus far, most game engines introduce a layer that I’ll
call the gameplay foundations layer (for lack of a standardized name). Shown
in Figure 1.33, this layer provides a suite of core facilities, upon which game-
specific logic can be implemented conveniently.

1.6.15.1 Game Worlds and Object Models

The gameplay foundations layer introduces the notion of a game world, con-
taining both static and dynamic elements. The contents of the world are usu-
ally modeled in an object-oriented manner (often, but not always, using an



1.6. Runtime Engine Architecture 51

Gameplay Foundations

Event/Messaging 
System

Dynamic Game 
Object Model

Scripting System

World Loading / 
Streaming

Static World 
Elements

Real-Time Agent-
Based Simulation

High-Level Game Flow System/FSM

Hierarchical 
Object Attachment

Figure 1.33. Gameplay foundation systems.

object-oriented programming language). In this book, the collection of object
types that make up a game is called the game object model. The game object
model provides a real-time simulation of a heterogeneous collection of objects
in the virtual game world.

Typical types of game objects include:

• static background geometry, like buildings, roads, terrain (often a spe-
cial case), etc.;

• dynamic rigid bodies, such as rocks, soda cans, chairs, etc.;

• player characters (PC);

• non-player characters (NPC);

• weapons;

• projectiles;

• vehicles;

• lights (which may be present in the dynamic scene at runtime, or only
used for static lighting offline);

• cameras;

and the list goes on.
The game world model is intimately tied to a software object model, and

this model can end up pervading the entire engine. The term software object
model refers to the set of language features, policies and conventions used to
implement a piece of object-oriented software. In the context of game engines,
the software object model answers questions, such as:



52 1. Introduction

• Is your game engine designed in an object-oriented manner?
• What language will you use? C? C++? Java? OCaml?
• How will the static class hierarchy be organized? One giant monolithic

hierarchy? Lots of loosely coupled components?
• Will you use templates and policy-based design, or traditional polymor-

phism?
• How are objects referenced? Straight old pointers? Smart pointers?

Handles?
• How will objects be uniquely identified? By address in memory only?

By name? By a global unique identifier (GUID)?
• How are the lifetimes of game objects managed?
• How are the states of the game objects simulated over time?

We’ll explore software object models and game object models in consider-
able depth in Section 15.2.

1.6.15.2 Event System

Game objects invariably need to communicate with one another. This can
be accomplished in all sorts of ways. For example, the object sending the
message might simply call a member function of the receiver object. An event-
driven architecture, much like what one would find in a typical graphical user
interface, is also a common approach to inter-object communication. In an
event-driven system, the sender creates a little data structure called an event
or message, containing the message’s type and any argument data that are to
be sent. The event is passed to the receiver object by calling its event handler
function. Events can also be stored in a queue for handling at some future
time.

1.6.15.3 Scripting System

Many game engines employ a scripting language in order to make devel-
opment of game-specific gameplay rules and content easier and more rapid.
Without a scripting language, you must recompile and relink your game ex-
ecutable every time a change is made to the logic or data structures used in
the engine. But when a scripting language is integrated into your engine,
changes to game logic and data can be made by modifying and reloading the
script code. Some engines allow script to be reloaded while the game contin-
ues to run. Other engines require the game to be shut down prior to script
recompilation. But either way, the turnaround time is still much faster than it
would be if you had to recompile and relink the game’s executable.



1.6. Runtime Engine Architecture 53

1.6.15.4 Artificial Intelligence Foundations

Traditionally, artificial intelligence has fallen squarely into the realm of game-
specific software—it was usually not considered part of the game engine per
se. More recently, however, game companies have recognized patterns that
arise in almost every AI system, and these foundations are slowly starting to
fall under the purview of the engine proper.

A company called Kynogon developed a middleware SDK named Ky-
napse, which provided much of the low-level technology required to build
commercially viable game AI. This technology was purchased by Autodesk
and has been superseded by a totally redesigned AI middleware package
called Gameware Navigation, designed by the same engineering team that in-
vented Kynapse. This SDK provides low-level AI building blocks such as nav
mesh generation, path finding, static and dynamic object avoidance, identifi-
cation of vulnerabilities within a play space (e.g., an open window from which
an ambush could come) and a well-defined interface between AI and anima-
tion. Autodesk also offers a visual programming system and runtime engine
called Gameware Cognition, which together with Gameware Navigation aims
to make building ambitious game AI systems easier than ever.

1.6.16 Game-Specific Subsystems

On top of the gameplay foundation layer and the other low-level engine com-
ponents, gameplay programmers and designers cooperate to implement the
features of the game itself. Gameplay systems are usually numerous, highly
varied and specific to the game being developed. As shown in Figure 1.34,
these systems include, but are certainly not limited to the mechanics of the
player character, various in-game camera systems, artificial intelligence for
the control of non-player characters, weapon systems, vehicles and the list
goes on. If a clear line could be drawn between the engine and the game, it

GAME-SPECIFIC SUBSYSTEMS

Game-Specific Rendering

Terrain Rendering Water Simulation 
& Rendering

etc.

Player Mechanics

Collision Manifold Movement

State Machine & 
Animation

Game Cameras

Player-Follow 
Camera

Debug Fly-
Through Cam

Fixed Cameras Scripted/Animated 
Cameras

AI

Sight Traces & 
Perception Path Finding (A*)

Goals & Decision-
Making

Actions
(Engine Interface)

Camera-Relative 
Controls (HID)

Weapons Power-Ups etc.Vehicles Puzzles

Figure 1.34. Game-specific subsystems.



54 1. Introduction

would lie between the game-specific subsystems and the gameplay founda-
tions layer. Practically speaking, this line is never perfectly distinct. At least
some game-specific knowledge invariably seeps down through the gameplay
foundations layer and sometimes even extends into the core of the engine
itself.

1.7 Tools and the Asset Pipeline

Any game engine must be fed a great deal of data, in the form of game assets,
configuration files, scripts and so on. Figure 1.35 depicts some of the types of
game assets typically found in modern game engines. The thicker dark-grey
arrows show how data flows from the tools used to create the original source
assets all the way through to the game engine itself. The thinner light-grey
arrows show how the various types of assets refer to or use other assets.

1.7.1 Digital Content Creation Tools

Games are multimedia applications by nature. A game engine’s input data
comes in a wide variety of forms, from 3D mesh data to texture bitmaps to
animation data to audio files. All of this source data must be created and
manipulated by artists. The tools that the artists use are called digital content
creation (DCC) applications.

A DCC application is usually targeted at the creation of one particular type
of data—although some tools can produce multiple data types. For example,
Autodesk’s Maya and 3ds Max are prevalent in the creation of both 3D meshes
and animation data. Adobe’s Photoshop and its ilk are aimed at creating and
editing bitmaps (textures). SoundForge is a popular tool for creating audio
clips. Some types of game data cannot be created using an off-the-shelf DCC
app. For example, most game engines provide a custom editor for laying
out game worlds. Still, some engines do make use of preexisting tools for
game world layout. I’ve seen game teams use 3ds Max or Maya as a world
layout tool, with or without custom plug-ins to aid the user. Ask most game
developers, and they’ll tell you they can remember a time when they laid
out terrain height fields using a simple bitmap editor, or typed world layouts
directly into a text file by hand. Tools don’t have to be pretty—game teams
will use whatever tools are available and get the job done. That said, tools
must be relatively easy to use, and they absolutely must be reliable, if a game
team is going to be able to develop a highly polished product in a timely
manner.



1.7. Tools and the Asset Pipeline 55

Digital Content Creation (DCC) Tools

Game World

Game 
Object

Mesh

Skeletal Hierarchy 
Exporter

Skel. 
Hierarchy

Animation 
Exporter

Animation 
Curves

TGA
Texture

DXT Compression DXT 
Texture

World Editor

Game Object 
Definition Tool

Material
Game Obj. 
Template

Animation 
Set

Animation Tree 
Editor

Animation 
Tree

Game 
Object

Game 
Object

Asset 
Conditioning 

Pipeline

GAME

WAV
sound

Audio Manager 
Tool

Sound 
Bank

Mesh Exporter

PhotoshopPhotoshop

Sound Forge or Audio ToolSound Forge or Audio Tool

Game 
Object

Maya, 3DSMAX, etc.Maya, 3DSMAX, etc.

Custom Material 
Plug-In

Houdini/Other Particle ToolHoudini/Other Particle Tool

Particle 
System

Particle Exporter

Figure 1.35. Tools and the asset pipeline.

1.7.2 The Asset Conditioning Pipeline

The data formats used by digital content creation (DCC) applications are rarely
suitable for direct use in-game. There are two primary reasons for this.

1. The DCC app’s in-memory model of the data is usually much more com-
plex than what the game engine requires. For example, Maya stores a di-
rected acyclic graph (DAG) of scene nodes, with a complex web of inter-
connections. It stores a history of all the edits that have been performed
on the file. It represents the position, orientation and scale of every ob-
ject in the scene as a full hierarchy of 3D transformations, decomposed
into translation, rotation, scale and shear components. A game engine



56 1. Introduction

typically only needs a tiny fraction of this information in order to render
the model in-game.

2. The DCC application’s file format is often too slow to read at runtime,
and in some cases it is a closed proprietary format.

Therefore, the data produced by a DCC app is usually exported to a more
accessible standardized format, or a custom file format, for use in-game.

Once data has been exported from the DCC app, it often must be further
processed before being sent to the game engine. And if a game studio is ship-
ping its game on more than one platform, the intermediate files might be pro-
cessed differently for each target platform. For example, 3D mesh data might
be exported to an intermediate format, such as XML, JSON or a simple binary
format. Then it might be processed to combine meshes that use the same ma-
terial, or split up meshes that are too large for the engine to digest. The mesh
data might then be organized and packed into a memory image suitable for
loading on a specific hardware platform.

The pipeline from DCC app to game engine is sometimes called the asset
conditioning pipeline (ACP). Every game engine has this in some form.

1.7.2.1 3D Model/Mesh Data

The visible geometry you see in a game is typically constructed from triangle
meshes. Some older games also make use of volumetric geometry known as
brushes. We’ll discuss each type of geometric data briefly below. For an in-
depth discussion of the techniques used to describe and render 3D geometry,
see Chapter 10.

3D Models (Meshes)

A mesh is a complex shape composed of triangles and vertices. Renderable
geometry can also be constructed from quads or higher-order subdivision sur-
faces. But on today’s graphics hardware, which is almost exclusively geared
toward rendering rasterized triangles, all shapes must eventually be trans-
lated into triangles prior to rendering.

A mesh typically has one or more materials applied to it in order to define
visual surface properties (color, reflectivity, bumpiness, diffuse texture, etc.).
In this book, I will use the term “mesh” to refer to a single renderable shape,
and “model” to refer to a composite object that may contain multiple meshes,
plus animation data and other metadata for use by the game.

Meshes are typically created in a 3D modeling package such as 3ds Max,
Maya or SoftImage. A powerful and popular tool by Pixologic called ZBrush



1.7. Tools and the Asset Pipeline 57

allows ultra high-resolution meshes to be built in a very intuitive way and
then down-converted into a lower-resolution model with normal maps to ap-
proximate the high-frequency detail.

Exporters must be written to extract the data from the digital content cre-
ation (DCC) tool (Maya, Max, etc.) and store it on disk in a form that is di-
gestible by the engine. The DCC apps provide a host of standard or semi-
standard export formats, although none are perfectly suited for game devel-
opment (with the possible exception of COLLADA). Therefore, game teams
often create custom file formats and custom exporters to go with them.

Brush Geometry

Brush geometry is defined as a collection of convex hulls, each of which is de-
fined by multiple planes. Brushes are typically created and edited directly in
the game world editor. This is essentially an “old school” approach to creating
renderable geometry, but it is still used in some engines.

Pros:

• fast and easy to create;
• accessible to game designers—often used to “block out” a game level for

prototyping purposes;
• can serve both as collision volumes and as renderable geometry.

Cons:

• low-resolution;
• difficult to create complex shapes;
• cannot support articulated objects or animated characters.

1.7.2.2 Skeletal Animation Data

A skeletal mesh is a special kind of mesh that is bound to a skeletal hierarchy for
the purposes of articulated animation. Such a mesh is sometimes called a skin
because it forms the skin that surrounds the invisible underlying skeleton.
Each vertex of a skeletal mesh contains a list of indices indicating to which
joint(s) in the skeleton it is bound. A vertex usually also includes a set of joint
weights, specifying the amount of influence each joint has on the vertex.

In order to render a skeletal mesh, the game engine requires three distinct
kinds of data:

1. the mesh itself,

2. the skeletal hierarchy (joint names, parent-child relationships and the
base pose the skeleton was in when it was originally bound to the mesh),
and



58 1. Introduction

3. one or more animation clips, which specify how the joints should move
over time.

The mesh and skeleton are often exported from the DCC application as a
single data file. However, if multiple meshes are bound to a single skeleton,
then it is better to export the skeleton as a distinct file. The animations are usu-
ally exported individually, allowing only those animations which are in use
to be loaded into memory at any given time. However, some game engines
allow a bank of animations to be exported as a single file, and some even lump
the mesh, skeleton and animations into one monolithic file.

An unoptimized skeletal animation is defined by a stream of 4 × 3 matrix
samples, taken at a frequency of at least 30 frames per second, for each of the
joints in a skeleton (of which there can be 500 or more for a realistic humanoid
character). Thus, animation data is inherently memory-intensive. For this
reason, animation data is almost always stored in a highly compressed format.
Compression schemes vary from engine to engine, and some are proprietary.
There is no one standardized format for game-ready animation data.

1.7.2.3 Audio Data

Audio clips are usually exported from Sound Forge or some other audio pro-
duction tool in a variety of formats and at a number of different data sam-
pling rates. Audio files may be in mono, stereo, 5.1, 7.1 or other multi-channel
configurations. Wave files (.wav) are common, but other file formats such as
PlayStation ADPCM files (.vag) are also commonplace. Audio clips are often
organized into banks for the purposes of organization, easy loading into the
engine, and streaming.

1.7.2.4 Particle Systems Data

Modern games make use of complex particle effects. These are authored by
artists who specialize in the creation of visual effects. Third-party tools, such
as Houdini, permit film-quality effects to be authored; however, most game
engines are not capable of rendering the full gamut of effects that can be cre-
ated with Houdini. For this reason, many game companies create a custom
particle effect editing tool, which exposes only the effects that the engine ac-
tually supports. A custom tool might also let the artist see the effect exactly as
it will appear in-game.

1.7.3 The World Editor

The game world is where everything in a game engine comes together. To my
knowledge, there are no commercially available game world editors (i.e., the



1.7. Tools and the Asset Pipeline 59

game world equivalent of Maya or Max). However, a number of commercially
available game engines provide good world editors:

• Some variant of the Radiant game editor is used by most game engines
based on Quake technology.

• The Half-Life 2 Source engine provides a world editor called Hammer.
• UnrealEd is the Unreal Engine’s world editor. This powerful tool also

serves as the asset manager for all data types that the engine can con-
sume.

Writing a good world editor is difficult, but it is an extremely important
part of any good game engine.

1.7.4 The Resource Database

Game engines deal with a wide range of asset types, from renderable geom-
etry to materials and textures to animation data to audio. These assets are
defined in part by the raw data produced by the artists when they use a tool
like Maya, Photoshop or SoundForge. However, every asset also carries with
it a great deal of metadata. For example, when an animator authors an anima-
tion clip in Maya, the metadata provides the asset conditioning pipeline, and
ultimately the game engine, with the following information:

• A unique id that identifies the animation clip at runtime.
• The name and directory path of the source Maya (.ma or .mb) file.
• The frame range—on which frame the animation begins and ends.
• Whether or not the animation is intended to loop.
• The animator’s choice of compression technique and level. (Some assets

can be highly compressed without noticeably degrading their quality,
while others require less or no compression in order to look right in-
game.)

Every game engine requires some kind of database to manage all of the
metadata associated with the game’s assets. This database might be imple-
mented using an honest-to-goodness relational database such as MySQL or
Oracle, or it might be implemented as a collection of text files, managed by
a revision control system such as Subversion, Perforce or Git. We’ll call this
metadata the resource database in this book.

No matter in what format the resource database is stored and managed,
some kind of user interface must be provided to allow users to author and
edit the data. At Naughty Dog, we wrote a custom GUI in C# called Builder
for this purpose. For more information on Builder and a few other resource
database user interfaces, see Section 6.2.1.3.



60 1. Introduction

OS

Drivers

Hardware (PC, XBOX360, PS3, etc.)

3rd Party SDKs

Platform Independence Layer

Core Systems

Run-Time Engine

Tools and World Builder

Figure 1.36. Stand-alone tools architecture.

1.7.5 Some Approaches to Tool Architecture

A game engine’s tool suite may be architected in any number of ways. Some
tools might be stand-alone pieces of software, as shown in Figure 1.36. Some
tools may be built on top of some of the lower layers used by the runtime en-
gine, as Figure 1.37 illustrates. Some tools might be built into the game itself.
For example, Quake- and Unreal-based games both boast an in-game console
that permits developers and “modders” to type debugging and configuration
commands while running the game. Finally, web-based user interfaces are
becoming more and more popular for certain kinds of tools.

As an interesting and unique example, Unreal’s world editor and asset
manager, UnrealEd, is built right into the runtime game engine. To run the
editor, you run your game with a command-line argument of “editor.” This
unique architectural style is depicted in Figure 1.38. It permits the tools to
have total access to the full range of data structures used by the engine and
avoids a common problem of having to have two representations of every
data structure—one for the runtime engine and one for the tools. It also means
that running the game from within the editor is very fast (because the game
is actually already running). Live in-game editing, a feature that is normally
very tricky to implement, can be developed relatively easily when the editor
is a part of the game. However, an in-engine editor design like this does have
its share of problems. For example, when the engine is crashing, the tools



1.7. Tools and the Asset Pipeline 61

OS

Drivers

Hardware (PC, XBOX360, PS3, etc.)

3rd Party SDKs

Platform Independence Layer

Core Systems

Run-Time Engine Tools and World Builder

Figure 1.37. Tools built on a framework shared with the game.

become unusable as well. Hence a tight coupling between engine and asset
creation tools can tend to slow down production.

OS

Drivers

Hardware (PC, XBOX360, PS3, etc.)

3rd Party SDKs

Platform Independence Layer

Core Systems

Run-Time Engine

Other Tools

World Builder

Figure 1.38. UnrealEngine’s tool architecture.



62 1. Introduction

1.7.5.1 Web-Based User Interfaces

Web-based user interfaces are quickly becoming the norm for certain kinds of
game development tools. At Naughty Dog, we use a number of web-based
UIs. Naughty Dog’s localization tool serves as the front-end portal into our
localization database. Tasker is the web-based interface used by all Naughty
Dog employees to create, manage, schedule, communicate and collaborate on
game development tasks during production. A web-based interface known
as Connector also serves as our window into the various streams of debugging
information that are emitted by the game engine at runtime. The game spits
out its debug text into various named channels, each associated with a differ-
ent engine system (animation, rendering, AI, sound, etc.) These data streams
are collected by a lightweight Redis database. The browser-based Connector
interface allows users to view and filter this information in a convenient way.

Web-based UIs offer a number of advantages over stand-alone GUI appli-
cations. For one thing, web apps are typically easier and faster to develop
and maintain than a stand-alone app written in a language like Java, C# or
C++. Web apps require no special installation—all the user needs is a com-
patible web browser. Updates to a web-based interface can be pushed out to
the users without the need for an installation step—they need only refresh or
restart their browser to receive the update. Web interfaces also force us to de-
sign our tools using a client-server architecture. This opens up the possibility
of distributing our tools to a wider audience. For example, Naughty Dog’s
localization tool is available directly to outsourcing partners around the globe
who provide language translation services to us. Stand-alone tools still have
their place of course, especially when specialized GUIs such as 3D visualiza-
tion are required. But if your tool only needs to present the user with editable
forms and tabular data, a web-based tool may be your best bet.




